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Abstract

Finding a paper that provides a non-vacuous regret bound for online gradient descent (OGDM) with fixed
momentum was surprisingly difficult. The proofs in the Adam paper and variants (like AMSGrad) make use
of an exponentially decaying momentum parameter, which basically reverts to no momentum very quickly.
Fortunately, [AMMC20] have already solved this problem — the core ingredient is their simple Lemma 1. In
this document we use this lemma to provide a simple regret bound for OGDM, to help understand the simplest
case. For a momentum parameter β ∈ [0, 1), OGDM has a worst-case adversarial regret of O(DG

√
T/(1− β)).

While this bound does not show acceleration, it shows at least that OGDM is consistent. It also follows that
Adagrad can (likely) be made to use of momentum without losing consistency.

Define Online Gradient Descent with Momentum (OGDM), in a convex compact (closed, bounded) domain D:

mt = βmt−1 + (1− β)gt (1)

xt+1 = ΠD(xt − ηmt) . (2)

where ΠD(x) = argminy∈D ∥x− y∥22, and m0 = 0, and β ∈ [0, 1).

Assumptions. We consider some horizon T . Let G ≥ maxt≤T ∥gt∥, then we also have maxt≤T ∥mt∥ ≤ G. For all
x and y of the domain D, ∥x− y∥ ≤ D.

Theorem 1. For a fixed horizon T , when optimizing η, the regret of OGDM compared to any point x∗ of the
domain after T steps is bounded by

RT ≤ DG

√
1 + β

1− β
T +

β

1− β
DG . ⋄

Proof. From Eq. (1),

gt =
mt

1− β
− βmt−1

1− β
.

Following [AMMC20, Lemma 1], the regret can be written

RT ≤
∑
t≤T

⟨xt − x∗, gt⟩

=
1

1− β

∑
t≤T

⟨xt − x∗,mt⟩ −
β

1− β

∑
t≤T

⟨xt − x∗,mt−1⟩

=
1

1− β

∑
t≤T

⟨xt − x∗,mt⟩ −
β

1− β

∑
t≤T

⟨xt−1 − x∗,mt−1⟩︸ ︷︷ ︸
(A)

+
β

1− β

∑
t≤T

⟨xt−1 − xt,mt−1⟩︸ ︷︷ ︸
(B)

.

With m0 = 0,

(A) =
∑
t≤T

⟨xt − x∗,mt⟩ − ⟨xT − x∗,mT ⟩ ,

and by Cauchy-Schwartz ⟨xT −x∗,mT ⟩ ≤ ∥xT −x∗∥ ∥mT ∥ ≤ DG. Similarly, using that projection is non-expansive,
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that is ∥xt − xt−1∥ = ∥ΠD(xt−1 − ηmt−1)−ΠD(xt−1)∥ ≤ ∥(xt−1 − ηmt−1)− xt−1∥ = η∥mt−1∥, we have

(B) ≤
∑
t≤T

∥xt − xt−1∥ ∥mt−1∥ ≤
∑
t≤T

∥ηmt−1∥ ∥mt−1∥ ≤ ηTG2 .

Thus:

RT ≤
∑
t≤T

⟨xt − x∗,mt⟩+
β

1− β
DG+ η

β

1− β
TG2 .

Now, because of Eq. (2), the first sum is really just the regret of OGD where the ‘gradients’ (or rather, the linear

losses) are the terms mt. Hence, from the standard OGD analysis we have
∑T

t=1⟨xt − x∗,mt⟩ ≤ ∥x1−x∗∥2

2η +
η
2

∑T
t=1 ∥mt∥2. This gives us:

RT ≤ 1

2η
D2 +

η

2
TG2 +

β

1− β
DG+ η

β

1− β
TG2 .

Finally, optimizing for η taking η = D
G

√
1−β

T (1+β) gives the result.
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for Adam-type algorithms. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 202–210. PMLR, 13–18 Jul 2020.

2


